Tamoxifen: a potential new drug for Duchenne

Urs Ruegg
University of Geneva, Geneva, Switzerland

Why tamoxifen in DMD?
A Treatment of mdx mice for 15 months
Performance
Diaphragm
Cardiac fibrosis
B Treatment of adult mdx mice (2 months at “mid-life”)
Dose – effect
Muscle contractibility
Membrane permeability
C Tamoxifen
Mechanism of action
Plasma levels of cytokines
Mdx cardiomyocytes
Summary of effects
Pro’s & Con’s
Why evaluate tamoxifen?

A Physiology of estrogens
• Female *mdx* mice have stronger muscles than male ones.
• Force is increased when plasma estrogen levels are high.
• Estrogens improve muscle resistance to fatigue.
• Estrogens increase myofiber regeneration.
• Estrogens increase muscle mass recovery from disuse atrophy.

B Why tamoxifen?
• Tamoxifen has estrogen-like activity.
• Tamoxifen is an antagonist in the mammary gland – used to treat breast cancer and an agonist in bone (and maybe in muscle).
• Over 30 years of clinical experience with tamoxifen.

Note: Tamoxifen is a pro-drug: metabolized into 4-hydroxy amoxifen – 100 times more potent.
Major signalling events in the dystrophic pathogenesis

LACK of DYSTROPHIN

- kinase activity
- Ca\(^{2+}\) influx
- oxidative stress
- membrane fragility

multiple dysfunctions of muscle cell homeostasis
- protein function
- FORCE GENERATION
- metabolism
- mitochondrial function
- ATP deficit

muscle cell death

- regeneration
- fibrosis/adiposis
- inflammation

muscle wasting

DEATH
A. Treatment of \(mdx^{5Cv} \) mice with tamoxifen for 15 months: Experimental design

- **Birth**
- **4-5 weeks**
- **6-8 weeks**
- **16 months**
- **Death**

TAM, 10 mg/kg/day via food for 15 Mo

- body weight, food consumption
- wire test
- force recording
- postmortem analyses
 - Histology
 - Western blots
 - gene expression

Groups
- **Dys:** untreated mdx males
- **TAM:** TAM-treated mdx males
- **wt:** untreated wildtype males
- **FEM:** untreated female mdx males

The mdx mouse

(From SCIENCEphotoLIBRARY)
A. Treatment of mdx^{5Cv} mice with tamoxifen for 15 months – Performance & CK

Performance at the wire test

Creatine kinase levels

TAM treatment for 15 months increases motor performance and reduces CK blood levels
A. Treatment of mdx^{5Cv} mice with tamoxifen for 15 months: Diaphragm morphology

TAM treatment for over a year makes diaphragm bigger, less fibrotic, and normalizes myofibre size.
A. Treatment of mdx^{5Cv} mice with tamoxifen for 15 months – Cardiac fibrosis

TAM treatment for 15 months reduces cardiac fibrosis
B. Treatment of adult *mdx* mice for 2 months: experimental design

Alm: effect on the low intensity stage of the disease – “mid-life”

- TAM, 10 mg/kg/day for 15 Mo
- TAM (mg/kg/day)
- raloxifene (RAL), fulvestrant (Faslodex)
- weekly grid tests
- locomotor activity
- force recording
- tissue collection
- plasma CK
- postmortem analyses

The *mdx* mouse (muscular dystrophy, Xlinked)
B. Treatment of adult *mdx* mice for 2 months: dose - effect

Grid test

TAM treatment of adult mice dose-dependently ameliorates motor performance
In vivo muscle contraction test

- Stimulator
- Intensity
- Duration
- Frequency
- Mouse
- Force
- Transducer
- Data acquisition and analysis

single twitches / phasic contractions

forcefrequency curve / tetanic contractions

muscle fatigue
B. Treatment of adult *mdx* mice for 2 months: Isometric muscle contractibility

TAM treatment of adult mice dose-dependently causes muscle to contact stronger and slower.
B. Treatment of adult *mdx* mice for 2 months: Membrane permeability

Evans blue dye uptake

diaphragm

- Dys
- TAM
- RAL
- Poloxamer
- wt

gastrocnemius

- Dys
- TAM

A mouse 18h post EBD injection

Creatine kinase activity (U/mL)

- TAM
- RAL
- P188
- wt

% EBD positive fibres

- TAM
- Dys
- RAL
- Poloxamer
- wt

TAM treatment of adult mice dose-dependently stabilizes myofibre membranes
C. Mechanisms of action of tamoxifen on dystrophic muscle

Antagonism of TAM effects by pure antiestrogen fulvestrant / Faslodex

Data suggest that TAM acts, at least partly, via estrogen receptors:
TAM effects are antagonized by fulvestrant
TAM is potent: low nanomolar concentrations in plasma and tissues

TAM effect is antagonized by the pure antiestrogen fulvestrant
C. Tamoxifen alters plasma levels of cytokines

TAM ↓ TGF, PDGF & osteopontin but strongly ↑ IGF-1 levels
C. Tamoxifen reduces stress-induced calcium elevations in *mdx* cardiomyocytes

Figure 1: Intracellular Ca$^{2+}$ response of ventricular myocytes from *mdx*SCV mice (n=6) and TAM treated *mdx*SCV mice (n=6) during the osmotic shock protocol. (A) Images of Ca$^{2+}$-related fluorescence (fluo-3) at 0s (a), 30s (b) and 60s (c). Top: *mdx*SCV mice, Bottom: TAM mice. Scale bar: 10 μm. (B) Mean values of fluorescent intensity averaged for each cell from the *mdx*SCV and tam group between 60 and 100 seconds. (C) Time courses of normalized fluorescence (±SEM) averaged for each cell from the *mdx* and tam group for the entire protocol. P<0.01: ***. N=1 mouse, n= number of cells.

Results by Emmanuel Lauber, Charlotte Lorin & Ernst Niggli - University of Berne
LACK of DYSTROPHIN

- kinase activity
- Ca\(^{2+}\) influx
- oxidative stress
- membrane fragility

multiple dysfunctions of muscle cell homeostasis

- protein function
- metabolism
- mitochondrial function
- gene expression
- FORCE GENERATION
- ATP deficit

muscle cell death

- regeneration
- fibrosis/adiposis
- inflammation

muscle wasting

DEATH
Tamoxifen – Pro’s & Con’s

Pro’s

1. **Mimics natural physiological pathway** – females, estrogen action
2. **Well known profile** – 30 years of experience, incl. children
3. **Exon-independent**
4. **Results validated in another lab**
5. **Cost** – £ 1000 - 5000/year

Con’s

1. **Not done according to GLP rules**
2. **Not a cure**
3. **Mechanism not yet fully clarified**
4. **No patent** – difficulty in large funding

Action Duchenne 12th International Annual Conference “From the Labs to the Clinic”
Thank you for your attention

Special thanks to
Pharmacology (Geneva)
Olivier PETERMANN
Hesham ISMAIL
Ophélie PATTHEYVUADENS

Collaborators and contributors
Royal Veterinary College (London, UK)
Dominic WELLS

University of Bern
Emmanuel LAUBER
Ernst NIGGLI

Lausanne University Hospital (Lausanne)
Elyes DAHMANE
Laurent DECOSTERD

Swiss Federal Institute of Technology (Lausanne)
Nicolas MERMOD
Stefania PUTTINI

Funding
USA
Switzerland
The Netherlands

Parent Project Muscular Dystrophy
LEADING THE FIGHT TO END DUCHENNE

AFMTELETHON
CURE THROUGH INNOVATION

Fondation suisse de recherche sur les maladies musculaires