CRISPR/Cas9-Based Gene Therapy for Duchenne Muscular Dystrophy

Charles A. Gersbach, Ph.D.
Department of Biomedical Engineering
Department of Orthopaedic Surgery
Center for Genomic and Computational Biology
Duke University

November 6, 2015
Action Duchenne International Conference
London, UK

Challenges for Gene Therapy

1. Safety
 Inability to control transgene-genome interactions

2. Delivery
 Inability to achieve persistent gene expression

3. Efficiency
 Inability to deliver large genes
Challenges for Gene Therapy

1. Safety
 - Inability to control transgene-genome interactions

2. Delivery
 - Inability to achieve persistent gene expression

3. Efficiency
 - Inability to deliver large genes

All potentially addressable by correcting endogenous gene (Genome Editing)

Gene Therapy for DMD

DNA → mRNA → Protein

Adeno-Associated Virus: Extra copy of the dystrophin DNA
 - **Challenge**: Large dystrophin gene

Exon Skipping: Restore expression from the mRNA
 - **Challenge**: Requires continuous administration

Genome Editing: Restore expression from the native gene
 - **Challenge**: Many…
Duchenne Muscular Dystrophy

- Occurs 1/3500 male births
- Debilitating during childhood & death during 20’s
- Respiratory complications & cardiac myopathy
- Inherited or spontaneous mutation to dystrophin
 - 79 exons over 2.5 Mb (14 kb cDNA)
- Cytoskeletal structural protein
 - Cell integrity & intracellular signaling
- No current therapeutic options!

Extracellular Matrix
- Dystrophin Glycoprotein Complex
- Dystrophin
- Actin

Genome Editing with Engineered Nucleases

Target Gene + Nuclease(s)

- Gene Addition/Exchange (Homologous Recombination)
- Gene Disruption (Non-Homologous End Joining)
- Gene Deletion (Non-Homologous End Joining)

Correction of Genetic Diseases by Genome Editing:

Programmable Nucleases

Zinc Finger Nucleases (ZFNs) and TALENs

DNA-binding domains:
• Zinc finger proteins
• TAL effectors

Effector domains:
• FokI endonuclease catalytic domain

CRISPR/Cas9

Restoring Dystrophin Expression around Exon 44-50 Deletion Hotspot

<table>
<thead>
<tr>
<th>DMD genotype</th>
<th>Dystrophin mRNA transcript</th>
<th>Resulting dystrophin protein</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 45 46 47 48 49 50 51 stop 52</td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>DMD</td>
</tr>
<tr>
<td>44 45 46 47 48 49 51 52</td>
<td></td>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>44 45 46-51 52</td>
<td></td>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>44 45-51 52</td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
</tbody>
</table>

• Exon 51 skipping can correct 13% of DMD mutations
• Oligonucleotide-mediated exon skipping is successful in clinical trials (Lancet, N Engl J Med, March 2011)
 • Requires lifelong treatment once a week
• Goal: Restoration by genome editing
Restoring Dystrophin Expression around Exon 44-50 Deletion Hotspot

DMD genotype

<table>
<thead>
<tr>
<th>Dystrophin mRNA transcript</th>
<th>Resulting dystrophin protein</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 45 46 47 48 49 50 51 52</td>
<td>[stop]</td>
<td>Normal</td>
</tr>
<tr>
<td>44 45 46 47 48 49 50 51 52</td>
<td></td>
<td>DMD</td>
</tr>
<tr>
<td>44 45 46 47 48 49 50 51 52</td>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>44 45 46 47 48 49 50 51 52</td>
<td></td>
<td>Mild</td>
</tr>
</tbody>
</table>

After correction:

<table>
<thead>
<tr>
<th>Dystrophin mRNA transcript</th>
<th>Resulting dystrophin protein</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 45 46 47 48 49 51 52</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>44 45 46 47 48 49 51 52</td>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>44 45 46 47 48 49 51 52</td>
<td></td>
<td>Normal</td>
</tr>
</tbody>
</table>

- Exon 51 skipping can correct 13% of DMD mutations
 - Requires lifelong treatment once a week
- Goal: Restoration by genome editing

Dave Ousterout

Editing the Dystrophin Gene with CRISPR/Cas9

Target: Exon 51

<table>
<thead>
<tr>
<th>Cas9 gRNA</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

% indels: 5.0 4.0 6.8 9.7 5.3

CR1/5 treated genomic DNA

CR2/5 treated genomic DNA

Genomic DNA

Precise deletion of exon 51 from the genome

Exon 51 skipping can correct 13% of DMD mutations (Phase III trials)

• Skipping 45-55 can correct 62% of DMD mutations (Aartsma-Rus et al., *Hum Mutat* 2009)
• Multi-exon skipping in preclinical development (Aoki et al., *PNAS* 2012)
Genome Editing for Duchenne Muscular Dystrophy

Delivery challenges

Autologous cell-based gene therapy
- Skeletal myoblasts
- Mesoangioblasts
- CD133+ cells
- Bone marrow stem cells
- Pericytes/MSCs
- Dermal fibroblasts
- Induced pluripotent stem cells (Darabi et al., Cell Stem Cell 2012; Filareto et al., Nat Comm 2013)

Delivery of nucleases to skeletal and cardiac muscle

Cell-Based Therapies for Muscle Disorders

Human Spectrin

Human Dystrophin

DMD untreated

DMD/Δ51 corrected clone

Human skeletal myoblast transplantation into NOD/SCID/γc mice

Ousterout et al. Mol Ther (2014)
Genome Editing for Duchenne Muscular Dystrophy

Delivery challenges
- Autologous cell-based gene therapy
- Skeletal myoblasts
- Mesoangioblasts
- CD133+ cells
- Bone marrow stem cells
- Pericytes/MSCs
- Dermal fibroblasts
- Induced pluripotent stem cells (Darabi et al., Cell Stem Cell 2012; Filareto et al., Nat Comm 2013)

Delivery of nucleases to skeletal and cardiac muscle in vivo

Summary
- Genome editing for Duchenne Muscular Dystrophy
- Multiple strategies for correcting reading frame
- Restoration of dystrophin expression in myoblasts from DMD patients
- No toxicity and limited off-target activity
- Robust gene editing, dystrophin restoration, and improved function following in vivo delivery

Challenges:
- Safety
- Immunogenicity
- Delivery & Efficiency
- Progenitor cells

General tool for science and medicine
Gersbach Lab
Josh Black
Jonathan Brunger
Matt Gemberling, PhD
Tyler Gibson, PhD
Isaac Hilton, PhD
Liad Holtzman
Hunter Hutchinson
Ami Kabadi, PhD
Tyler Klann
Dewran Kocak
Feimei Liu
Josh McMenemy
Christopher Nelson, PhD
David Ousterout, PhD
Pablo Pérez-Piñera, MD, PhD
Adrian Pickar, PhD
Adrianne Pittman
Lauren Polsteinm PhD
Jacqueline Robinson-Hamm
Nishkala Shivakumar
Pratiksha Thakore

Collaborators
Farshid Guilak (Duke)
Greg Crawford (Duke)
Tim Reddy (Duke)
Feng Zhang (Broad/MIT)
Aravind Asokan (UNC-CH)
Dongsheng Duan & Chady Hakim (Missouri)

Funding: NIH Director’s New Innovator Award (DP2OD008586), NIH (R01DA036865, T32GM008555, U01HG007900, UH3TR000505, P30AR066527, R21AR065956, R03AR061042), NSF CAREER Award (CBET-1151035), Muscular Dystrophy Association, The Hartwell Foundation, March of Dimes Foundation, American Heart Association, Nancy Taylor Foundation, Duke-Coulter Partnership, Duke Clinical and Translational Science Award

Thank You